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Abstract 

 Obtaining an efficient representation of an image that 

provides accurate characterization of its features by linear 

representation methods is gaining significant attention. The 

sparse and redundant representations are one such powerful 

representations which code a large amount of the image 

information with only a few image samples. The sparse 

coding problem has two approaches namely solutions using 

greedy algorithms and solutions by solving convex 

relaxation of the problem. This paper presents an overview 

of significant greedy solution methods. 

I. INTRODUCTION 

 There has been a huge progress in the  area of image 

processing through the last years. This  progress is mainly  

because of the type of image modeling used. Sparse and 

redundant interpretations of signals are being widely 

researched  and have been effectively applied to a variety of 

applications like image de-noise, image compression , image 

compression such as image de-noising, image compression, 

image super resolution , object recognition etc. 

 The idea behind sparse and redundant representation 

modeling is to express a signal as a linear combination of 

few elements from a predefined dictionary. In sparse 

representation terminology the dictionary elements are 

referred to as atoms or columns[1]. In applications such as  

compression, the representation that is employed should be 

such that it should be capable of capturing a large part of 

signal information with only a few coefficients. Therefore 

the choice of dictionary becomes a matter of great concern.  

 Sparse coding is the way of determining the coefficients 

of representation based on both the given signal and the 

dictionary. This process is known as atom decomposition by 

pursuit algorithms. 

 An approximate solution is found through a search 

algorithm. Many  pursuit techniques have been proposed 

over past decades with varying complexities and advantages. 

 The idea of obtaining a sparse representation of images 

dates back to 1993, when Mallat and Zhang proposed the 

concept [1]. The problem of spare approximation involves 

two procedures. They are  sparse coding and sparse 

dictionary learning. The sparse coding is a task of 

identifying  sparse vector. The two main approaches to 

 
 

estimate sparse vector are approximate solutions obtained 

using greedy algorithms and solving convex relaxation 

problem.  

II. THE SPARSE MODEL 

 A linear combination of a base matrix D ϵ RdxN  to 

represent a signal y ϵ Rdx1 is formulated as  

        y = Dx                                                                          (1) 

 The above stated relation defines a linear system where   

D = [d1,d2,d3,....dN] ϵ RdxN  is a dictionary of size dxN and 

 y ϵ Rdx1 is a signal vector and it is assumed to be represented 

as linear combination of some columns of D. Every column 

of dictionary D is known as an atom. The dictionary D 

contains N linearly independent column vectors (atoms) 

which are basis vectors.    

 The multiplication of D by a sparse vector x ϵ RNx1 with k 

nonzero elements produces a linear combination of k atoms 

with varying weights generating the signal y as given in (1). 

The system y = Dx is  underdetermined system when d < N .  

 As the dictionary contains more than d non-zero atoms, 

the solution is not unique. Out of many solutions a solution 

needs to be identified that will be sparsest one.  The sparsity 

of x is measured by l0-norm ║x║0 which actually represents 

the number of nonzero components of x. The solution can be 

obtained by finding  the solution to optimization problem, 

min║x║0 subjected to Dx = y                                              (2) 

The solution will  be sparse when ║x║0 N. 

III.  SPARSE SOLUTION BY GREEDY ALGORITHMS 

 Greedy algorithms are iterative methods of obtaining 

sparse approximation. In the greedy strategy approximation 

the aim is to solve the sparse representation method with l0-

norm minimization. But ,as the problem is an NP-hard 

problem , the greedy strategy provides only an approximate 

sparse representation solution. This section attempts to 

summarize the significant greedy techniques that have been  

proposed in literature. 

 

 

 

A. Matching  Pursuit Algorithm 

 

 The matching pursuit algorithm seems to be the oldest 

algorithms proposed by Mallat and Zhang[1] based on the 
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concept projection pursuit strategies proposed by Friedman 

and Stuetzle[2].  

 The matching pursuit decomposes a signal into a linear 

expansion of waveforms which belong to a large and 

redundant dictionary of functions. From the redundant 

dictionary the waveforms are selected to match the signal 

structure. 

 Let D = {dᵧ}ϵ RdxN be the dictionary of vectors. The 

elements of  dictionary D  referred to as atoms are such that 

║dγ║=1. Then the  linear expansion of a vector sample f 

over  a set of vectors selected from the dictionary is obtained 

by successive approximation of f with orthogonal projections 

on elements of dictionary D. Thus f can be decomposed as,  

 f = < f, dᵧ0 > dᵧ0 +R f                                                            

(3) 

where dᵧ0 ϵ D and < f, dᵧ0 > dᵧ0 represents orthogonal 

projection of f onto dᵧ0.The term Rf  is the residual by using 

dᵧ0 to represent f . 

 As dᵧ0 and f are orthogonal, it leads to  

║f║2=║<f,dγ0>║2 +║Rf║2                                                (4) 

The MP algorithm recursively  finds out the atom that suits 

best to minimize the residual Rf. Almost the best match 

vector dᵧ0 is found when the following condition is satisfied. 

  ║<f ,dγ0 >║ ≥  α sup | < f, dᵧ >|  , where α is optimality 

factor; 0 < α ≤ 1.                                                                   

(5) 

The MP algorithm iteratively  sub-decomposes the residual 

until the termination condition is satisfied. The  nth order 

residual is decomposed as  

Rnf = < Rnf, dᵧn> dᵧn + Rn+1 f                                                 (6) 

Rnf and dᵧn are orthogonal and hence  

║Rn f ║2 = ║Rnf,dγn║2 + ║Rn+1f ║2                                (7) 

At kth iteration, the vector sample is formulated as  

 f =  Rnf, dᵧn> dᵧn + Rk f                                          (8) 

When the residual is smaller than the pre-assumed value the 

f is approximated as    

 f ≈  Rnf, dᵧn> dᵧn                                                    (9) 

 

 Thus matching pursuit algorithm linearly decomposes the 

vector sample f into a sum of a few number of elements 

which are selected from a large and redundant dictionary to 

best match the residues.  

Here the choice of vector dᵧ0 is not random but it is defined 

by a choice function that satisfies the condition   ║<f ,dγ0 

>║≥ α sup | < f, dᵧ >| . The details are dealt by S. Mallat and 

Z. Zhang  [1]. 

 

B. Orthogonal Matching  Pursuit Algorithm 

 

 Orthogonal Matching Pursuit (OMP) is a refined version 

of the original  Matching pursuit algorithm. The matching 

pursuit algorithm yields an approximation error which 

decreases with each iteration and hence the algorithm is 

guaranteed to converge. Being an iterative algorithm, it  

functions by projecting an initial signal and residuals on 

dictionary atoms during successive iterations. The specific 

base which is correlated to the residual is selected at each 

step. The selected best fitting basis is collected in a set and 

then coefficients are modified by projecting the residuals on 

this support collection. The algorithm ends on two 

conditions: 

 First, if the residual energy falls below a predefined 

threshold and second, if the support package exceeds a 

predefined sparsity limit. 

 Even though convergence is guaranteed after a finite 

number of iterations the results are suboptimal as proved by 

Y.C.Pati, Rezaiifar, R.; Krishnaprasad, P.S [3]. The OMP 

which is an improved version proves to converge at a faster 

rate than MP. The theoretical and empirical work on OMP is 

investigated in detail by J. A. Tropp and A. C. Gilbert [4].  

 For any known  dimension dictionary of N elements, 

OMP approximates  the projections onto the span of the 

dictionary elements in not  greater than N steps. Also after a 

number of iterations, OMP provides the best approximation 

about the selected dictionary sub-set . This is accomplished 

by guaranteeing the full orthogonality of the backwards 

residue, a feature that is not available with MP algorithms. 

The proofs are given in [3].  

 

C. Fast Matching  Pursuit 

 

The difficulty in real world implementation of  MP and 

OMP is their computational complexity involved in  

sequential atom selection process in each iteration. To tackle 

this issue some fast processing approaches were proposed in  

[5]. The fast MP is a modified algorithm that uses atoms of 

anisotropic refinement to provide approximation capability. 

The experimental investigations show that the 

implementation is faster due to the usage of both sequential 

and parallel techniques. 

 The fast matching pursuit constructs a geometric 

dictionary in the first step and then employs two techniques, 

namely adaptive projection computation and M-fold atom 

selection, based on the dictionary cross-correlation, to 

decrease the complexity associated with the basic greedy 

algorithms. The dictionary is split into several sub-

dictionaries,  each one known as shape sub-dictionary. The 

projection computations are performed by estimating the 

cross-correlation between an atom dᵧ and the atom selected 

during nth iteration dᵧn. . Let dsi,n be the best matching atom in 

the shape sub-dictionary Si . At nth iteration the incoherence 

is evaluated as  

| < dsi,n-1, dᵧn-1
 > |< δ                                                            

(10)  

 where δ  is a fixed threshold .If the above condition is true 

then projection updating of Si is skipped. The above 

condition is true frequently since the atoms of the dictionary 

are spatially localized resulting in  a reduced number of FFT 

operations. 

 The authors claim that  image structures drawn by MP 

during consecutive iterations are spatial localized and mostly 

have no correlation. Therefore, with the aid of the estimated 

correlation the selection task is carried out in a simple way. 

The fast MP algorithm recursively finds an approximation 
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by choosing atoms M rather than one atom at  a time which 

in-turn significantly reduces the computational complexity. 

 

D. Complementary  Matching  Pursuit 

 

The algorithm resembles the original matching pursuit 

(MP) algorithms but performs the complementary action. In 

each iteration the MP selects only one atom for sparse 

approximation whereas the CMP algorithm deletes (N-1) 

atoms from the approximation in each iteration. It has been 

shown that due to complementary action the algorithm does 

not reduce the error in each iteration but results in faster 

convergence compared to MP [6]. 

 

E.  Compressive  Sampling  Matching Pursuit 

 

Compressive Sampling Matching Pursuit (CoSaMP )is 

one of the greedy pursuit algorithms proposed  by D. 

Needell and J.A.Tropp [7]. Compressive sampling 

reconstructs signals and images from far less measurements. 

The CoSaMP  is an improvement over  OMP based on 

orthogonal matching pursuit (OMP). 

The compressive sampling theory assumes that the 

applied signal is a linear signal sample function . The way 

samples are obtained is interpreted like a sampling matrix 

operating on the intended signal. Thus if  p number of 

samples are collected or measured from a signal in CN then 

the sampling matrix ψ has the dimension pxN. The condition 

that is used in acquiring minimum number of samples  

during compressive sampling is based on the fact that the 

matrix ψ should not map two different k-sparse signals to the 

same set of samples. Thus the collection of 2k columns from 

the sampling matrix must be a nonsingular or invertible. 

Violation of  this condition may make the inverting sampling 

process unstable. Therefore a more robust solution to ensure 

minimum number of measurements proposed by Candes and 

Tao [8] emphasizes  that geometry of sparse signals should 

be preserved under the action of sampling matrix ψ. Further, 

imposing  restricted isometry on ψ ensures that the collection 

of r columns from ψ is nonsingular. Recovery by 

Compressive sampling matching pursuit theorem [7] is 

defined as follows. 

Suppose that ψ  is a matrix of measurement pxN that 

follows the restricted condition of isometry δ2k < C. Let u =  

ψ x + e be an arbitrary signal sample vector contaminated 

with arbitrary noise e. The CoSaMP scheme produces a k-

sparse approximation a for a given precision parameter, 

which satisfies  

 

where  is a  k/2 sparse approximation to x.  

Compressive sampling matching pursuit is proved to run 

faster compared to other greedy algorithms as it selects 

multiple components in each iteration The details are given 

by  D. Needell and J.A. Tropp [7]. 

 

F.  Regularized Orthogonal Matching Pursuit 

 

The sparse signal recovery uses two different approaches 

namely iterative greedy methods and convex relaxation 

methods. While greedy methods being iterative in nature end 

up in sub-optimal solutions, the convex relaxation methods 

are numerically more complicated. 

 Regularized orthogonal matching pursuit algorithm has 

been developed as a modification of orthogonal matching 

pursuit (OMP)based on the study conducted by Holger 

Rauhut[14] on impossibility of uniform guarantees for 

orthogonal matching pursuit for natural measurement 

matrices.  

 The authors D.Needell and RomanVershynin [15]have 

pointed out the fact that the OMP has poor guarantees of 

exact recovery due to absence of a deterministic condition 

on measurement matrix. Motivated by these factors, the 

authors  have proposed  Regularized orthogonal matching 

pursuit and proved that exact recovery is possible given that 

the measurement matrix satisfies the restricted condition of 

isometry. The algorithmic details and experimental 

investigation on recovery of signals using ROMP are 

available in [15-16]. 

 

IV. CONCLUSION 

The sparse and redundant representation of signals and 

images has emerged as a new method of signal acquisition 

and reconstruction. Being an indispensable part of emerging 

compressive sensing theory, the research in the field of 

sparse and redundant modeling and its various applications 

has high potential. This paper gives the glimpse of  some 

important greedy pursuit algorithms. 
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